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Abstract Many factors affect the distribution of species
richness. This study examines the relative influence of
habitat heterogeneity, climate, human disturbance, and
spatial structure on the species-richness distribution of
terrestrial vertebrates (amphibians, reptiles, birds and
mammals) in mainland Spain. The results indicate that
spatial structure and environment exert similar influ-
ences on species richness. For all four taxa, species
richness increases southward and northward, being
lower in the center of the country, when controlled for
other variables. This may be the result of a peninsular
effect, as found in other studies, and reflect the impor-
tance of historical events on species richness in the Ibe-
rian Peninsula. Climate is more important than habitat
heterogeneity in determining species richness. Temper-
ature is positively correlated with amphibian, reptile,
and bird species richness, while mammalian species
richness is highest at intermediate temperatures. This
effect is stronger in ectotherms than among endotherms,
perhaps reflecting physiological differences. Precipita-
tion positively correlates with bird and mammalian
species richness, but has no effect on ectotherm species
richness. Amphibian species richness increases with
altitudinal range, and bird species richness with habitat
diversity. Human population density is positively cor-
related with bird and mammalian species richness, but
does not affect ectotherm species richness, while
amphibian and bird species richness is highest at mod-
erate levels of human land alteration (farmland). How-

ever, unexplained variance remains, and we discuss that
the effects of environmental variables on species richness
may vary geographically, causing different effects to be
obscured on a national scale, diminishing the explana-
tory power of environmental variables.
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Introduction

Many non-mutually exclusive hypotheses try to explain
geographic patterns of species diversity (Gaston and
Blackburn 2000), and many factors have been identified
that correlate with species richness. However, the rela-
tive importance of factors determining species richness
vary in many situations, including with spatial scale
(Whittaker et al. 2001; Willis and Whittaker 2002;
Rahbek 2005), and study zone (e.g., Davies et al. 2007).
Species richness of different animal groups may also be
affected in different ways by environmental factors (Jetz
and Rahbek 2002; Miller et al. 2003; Ruggiero and
Kitzberger 2004). For these reasons, it is necessary to
identify the factors that determine species richness of
different animal groups, at different spatial scales, and in
different regions, in order to provide a complete picture
of diversity distribution and its determinants in the
world, and to establish the general patterns behind the
distribution of species richness.

In the present work, we analyse the relationship be-
tween different ecological factors and the distribution of
terrestrial vertebrate species richness in mainland Spain
(one of the most biodiverse countries of Europe). We
tested the effect of habitat heterogeneity, climate, human
disturbance, and spatial structure on species richness of
amphibians, reptiles, mammals, and birds, at a spatial
scale of 100-km2 grain size. Our ultimate goal is to
understand the relative importance of these factors on
the vertebrate species richness in mainland Spain. This
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study complements that performed by González-Tabo-
ada et al. (2007) of passerine birds richness in the same
study area. However, the objective of that study was to
examine variation in the relative importance of different
factors with scale (i.e., grain size), which is not examined
here. Other studies have also examined factors deter-
mining species richness in different regions of Spain
(Atauri and de Lucio 2001; Nogués-Bravo and Martı́-
nez-Rica 2004; Moreno-Rueda and Pizarro 2007).

We analyze the effect of habitat heterogeneity, one of
the most important determinants of species richness
(Tews et al. 2004). As the dominant species tends to
exclude other species sharing the same niche (Pulliam
2000), the more ecological niches within a zone, the
more species that can coexist there, each occupying a
different niche (Brown 1995; Rosenzweig 1995; Pianka
2000). Indeed, many studies have found a positive cor-
relation between habitat heterogeneity (measured in
different ways) and species richness (review in Tews et al.
2004). Analyses at smaller extent in mainland Spain
have shown habitat heterogeneity to be more important
than climate in determining species richness (Nogués-
Bravo and Martı́nez-Rica 2004; Moreno-Rueda and
Pizarro 2007).

On the other hand, climate may affect species richness
in different ways. First, primary productivity is related
to climate (temperature and precipitation, Waide et al.
1999; Chown et al. 2003; Evans et al. 2005). The greater
the productivity, the larger the population sizes of spe-
cies, and hence, the lower the extinction risk for these,
yielding increased species richness (Wright 1983). Al-
though evidence in favor of this mechanism is mixed
(Currie et al. 2004; Evans et al. 2005; Storch et al. 2005),
many studies have reported a positive correlation be-
tween productivity (or any surrogate of productivity)
and species richness (Waide et al. 1999; Hawkins et al.
2003). Moreover, climate may also affect species richness
throughout the physiological limits of species (Allen
et al. 2002; Woodward and Kelly 2003; Clarke and
Gaston 2006). As ectothermic and endothermic animals
have sharp physiological differences, we would expect
climate to differently impact these two animal groups.

Nonetheless, the relative effect of climate and habitat
heterogeneity on species richness varies with the quan-
tity of energy in the environment. In zones with high
energy, energy is not limiting and habitat heterogeneity
is more important in determining species richness (Kerr
and Packer 1997). On the other hand, in low-latitude
temperate zones, water is more important than temper-
ature in determining species richness, because produc-
tivity is limited by water availability, while temperature
is more important in zones with low energy (i.e., at high
latitudes) (Hawkins et al. 2003; Whittaker et al. 2007). In
this context, we predict that habitat heterogeneity is
more important than climate in Spain, and precipitation
is more important than temperature in determining
vertebrate species richness.

Humans may negatively affect species-richness dis-
tributions because most species are negatively impacted

by human activity (McKinney and Lockwood 1999;
Real et al. 2003; Lee et al. 2004). However, a positive
correlation between human population and species
richness has often been recorded (Balmford et al. 2001;
Araújo 2003; Gaston and Evans 2004). This relationship
may be mediated by productivity (above), because high
primary productivity is correlated with both species
richness and human settlement (Balmford et al. 2001;
Chown et al. 2003; Evans and Gaston 2005). Therefore,
both positive and negative correlations between human
population and species richness may be expected. The
sign of this relationship seems to be mediated by the
grain size used in the study, with positive relationships at
large grain sizes and negative relationships at smaller
sizes (Pautasso 2007). We anticipate a positive correla-
tion between human population and species richness at
the grain size used in this study (10 km). At this grain
size, the negative impacts of human proximity are sel-
dom detected (Pautasso 2007). On the other hand, we
also expect a positive relationship between cropland area
and species richness, as farmlands are frequently situ-
ated in productive zones, where diversity is also high
(Burgess et al. 2007; Rangel et al. 2007).

In addition to the factors discussed above, species-
richness distribution may also be affected by spatial
structure (Jetz and Rahbek 2001). Species richness in a
given place may be influenced by species richness in the
surroundings (spatial autocorrelation; Legendre 1993).
This spatial autocorrelation may be caused by historical
events, population dynamics, or spatially autocorrelated
factors which have not been controlled for (Legendre
1993). Historical events may influence the distribution of
species richness (Ricklefs 2004; Wiens and Donoghe
2004), and spatial structure may reflect the relative
importance of such historical events. Mainland Spain,
partially isolated from the rest of Europe by the Pyre-
nean isthmus, and from Africa by the Gibraltar Strait,
was a refuge during glaciation events (Blondel and
Mourer-Chauviré 1998). This peculiarity makes spatial
structure very important for peninsular species-richness
distribution, as shown in passerine birds (Carrascal and
Lobo 2003; González-Taboada et al. 2007). Moreover,
geometric constraints may provoke a mid-domain effect,
with higher species richness in central Spain (Colwell
and Lees 2000).

Methods

Study area

The study area is mainland Spain, which experiences a
great variety of environments within the Mediterranean
zone, as well as oceanic climates along the Cantabrian
coast. The study area was divided into 5331 UTM
squares of about 10 · 10 km (Fig. 1). Cartographic
distortions caused some squares to be less than 100 km2,
and these were removed from the analyses. Squares
without environmental information (n = 54) were also
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dropped from the analyses. The final sample size was
5,070 squares, each consisting of 100 km2 of surface area
(±standard error of 0.07 km2).

Species richness

We defined species richness as the number of terrestrial
vertebrate species in each square. Data, available for
years 1980–2000, were taken from the dataset of verte-
brates in Spain (Ministerio de Medio Ambiente 2003;
also see Palomo and Gisbert 2002; Pleguezuelos et al.
2002; Martı́ and del Moral 2003). The dataset only in-
cluded breeding birds. We analyzed the four classes of
terrestrial vertebrates (amphibians, reptiles, birds, and
mammals) independently, in order to test the possibility
that predictors exercise different effects on each taxon.

Predictors of species richness

Values for environmental variables were acquired from
the European Environment Agency (period 1986–1996;

available at http://www.eea.europa.eu), using a geo-
graphic information system (SAGA; Conrad 2005).

– The effect of habitat heterogeneity. To test the effect of
habitat heterogeneity on species richness, we consid-
ered (1) the altitude range in each square, presuming
that the greater the range of altitudes in a square, the
wider the range of habitats in that square. Moreover,
we constructed the variable (2) habitat diversity, as
the sum of different land uses per square up to 45,
taken from Corine Land Cover (available at
http://www.eea.europa.eu). These land uses embraced
a complete and precise list of habitats present in
mainland Spain.

– The effect of climate. To test the effect of climate, we
considered two variables: (3) mean annual tempera-
ture and (4) total annual precipitation. Mean annual
temperature was strongly correlated with mean tem-
perature in the coldest and hottest months (r > 0.88).
Temperature is used as an indicator of energy avail-
able (Evans and Gaston 2005). However, in hot and
dry climates such as the Mediterranean, precipitation
is a better indicator of primary productivity (Hawkins

Fig. 1 Maps showing the distribution of species richness of amphibians (a), reptiles (b), birds (c), and mammals (d)
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et al. 2003). In the study area, precipitation is well
correlated with the Normalized Difference Vegetation
Index (NDVI; González-Taboada et al. 2007).

– Human effects. To test these effects, we considered (5)
human population density (log-transformed; data
from the European Environment Agency, for years
1986–1996). Additionally, we created the variable (6)
humanized surface area, as the percentage of surface
used by humans (croplands and urban zones) in each
square. This variable was transformed with the arco-
sine of the square root (Sokal and Rohlf 1995), and it
serves as a negative indicator of natural land (unused
by humans).

– The effect of spatial structure. To analyze the effect of
this factor, we included the geographic variables:
longitude (lon) and latitude (lat) of the centre of the
squares, as well as the terms lon2, lat2, lat3, lon2 · lat y
lon · lat2, according to Legendre (1993). We did not
include lon3 and latitude · longitude because these
variables destabilized the matrix and prevented the
calculation of least squares.

Statistical analyses

Variables had close to normal distributions or were
transformed to achieve normal distributions. All vari-
ables were standardized to mean = 0 and SD = 1.
Values of P were Bonferroni corrected (Sokal and Rohlf
1995). In a preliminary analysis, we used Pearson’s
product-moment correlations among independent pre-
dictors and species richness (these data are not shown).
As independent predictors were correlated, the inter-
pretation of results was delicate (see Endler 1995). For a
detailed analysis of how predictors affect species rich-
ness, independently of the other predictors, we used
general linear models (GLMs) of linear multiple
regression (ordinary least squares, OLS). Correlations
among independent variables were lower than 0.70, and
tolerance among variables was consistently higher than
0.30, suggesting that multicollinearity was a minor
problem (Quinn and Keough 2002). In order to testing
for curvilinear relationships, we introduced polynomial
terms of variables 1–6 into the models. In the tables, we
report the b values found in the models. Positive b-val-
ues for curvilinear terms indicate a concave-up
(U-shaped) relationship between the dependent variable
and the predictor, while negative values indicate a con-
cave-down (humped-shape) relationship between the
dependent variable and the predictor, with the other
predictors remaining statistically constant. Residuals of
the models showed a distribution close to a normal.

We estimated the relative importance of spatial
structure and the environment (habitat heterogeneity,
climate, and human effect, pooled) by partitioning of
variance with respect to the variance in species richness.
First, we divided variance into variance explained by

space, variance explained only by environmental vari-
ables (the effect of heterogeneity, climate, and human
factors pooled), and variance explained by a spatially
structured environment, following Borcard et al. (1992);
also see Legendre 1993). To calculate these variances, we
performed different models, introducing only spatial
variables (spatial model), only environmental variables
(environmental model), and all predictors (full model),
and by the subtraction of variances: var-space = var(full
model) – var(environmental model); var-environment =
var(full model) – var(spatial model); var-spatial struc-
tured environment = var(space + environment) –
var(full model); var-unexplained = 1.0 – var(full mod-
el). In this way, we separated the effect of spatial
structure from the effect of environment.

Lastly, the introduction of spatial structure controls
for broad spatial autocorrelation, but not for fine-scale
autocorrelation (Lichstein et al. 2002). Because spatial
autocorrelation increases Type I statistical errors, we
tested whether residuals of the models were strongly
autocorrelated, calculating Moran’s I, in order to eval-
uate the validity of models (Diniz-Filho et al. 2003).
Moran’s I usually varies between �1 and 1, and positive
I values for a distance given indicates that there is spatial
autocorrelation for such distance. We calculated Mor-
an’s I using SAM 2.0 (Rangel et al. 2006).

Results

Average vertebrate species richness in mainland Spain
was (mean ± SD) 98.4 ± 28.1 species per square. This
includes 4.9 ± 3.2 amphibians, 7.2 ± 4.7 reptiles,
71.2 ± 18.9 birds, and 15.0 ± 9.8 mammals per square.
Figure 1 shows the species-richness distribution for each
taxonomic class in Spain.

Our models explained relatively little variance, rang-
ing from 23.4% for amphibians to 33.7% for birds
(Table 1). In general, the spatial structure (average
9.2%), environmental variables (average 10.4%), and
spatially structured environment (autocorrelated, 10.4%)
explained similar amounts of variance (Table 1). Among
taxa, environmental variance ranged from 7.8 to 12.6,
while spatial variance was more homogeneous across
taxa (8.7–10.3; Table 1).

The effect of individual variables on species richness
varied sharply among taxa. Amphibian species richness
was not correlated with habitat diversity, but increased
with altitude range, although this relationship faltered at

Table 1 Variance (in %) components explaining patterns of species
richness

Amphibians Reptiles Birds Mammals

Explained variance 23.4 29.4 33.7 33.1
Environment spatially
structured

6.9 8.4 11.6 14.5

Spatial variance 8.7 8.4 10.3 9.4
Environmental variance 7.8 12.6 11.8 9.2
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high values of altitude due to diminishing returns (the
slope decreased at high values of altitude range, as
shown by the negative sign in the polynomial term;
Table 2). Amphibian species richness strongly increased
with temperature, although the slope again diminished
at high temperature, Amphibian species richness was not
significantly correlated with precipitation when other
variables were controlled (Table 2). Amphibian species
richness was maximal at intermediate values of
humanized surface area, and it was slightly correlated
with longitude after controlling for environmental vari-
ables (Table 2).

Reptile species richness did not significantly change
with variables related to habitat heterogeneity (Table 2).
However, temperature strongly correlated with reptile
species richness following a function with diminishing
returns (Table 2). Reptile species richness was lower at
intermediate values of human population density, and
was strongly influenced by spatial variables, exhibiting a
complex relationship with latitude (Table 2).

Bird species richness increased with habitat diversity
and with temperature. Bird species richness increased
with precipitation, although with diminishing returns at
high precipitation levels (Table 2). Bird species richness
increased linearly with human population density, and
achieved maximum species richness at intermediate lev-
els of humanized surface area (Table 2). Avian species
richness also varied with latitude, exhibiting a similar
pattern to reptilian species richness, with a complex
southward increase in species richness (Table 2).

Lastly, mammalian species richness decreased with
altitude range with a concave-up function (maximum
species richness in squares with low and high altitude
range; Table 2). Climate was also significantly correlated
with mammalian species richness. Species richness for
this group was greatest at intermediate temperatures,
and increased with precipitation with diminishing re-
turns at high levels of precipitation (Table 2). Mam-
malian species richness increased with human
population density with diminishing returns, and varied
with space in a manner similar to patterns observed in
reptiles and birds (Table 2).

Finally, Moran’s I values of residuals of models
generated were low (<0.3; Fig. 2), suggesting that most
of the spatial autocorrelation was removed by the
inclusion of spatial structure. Spatial autocorrelation
was greater than 0 only at distances of less than 100 km
(for mammals, less than 150 km).

Discussion

Habitat heterogeneity

We expected habitat heterogeneity to be a more
important determinant of species richness than climate
at latitudes occupied by Spain (Kerr and Packer 1997).
However, our results did not support this hypothesis.
While climate clearly correlated with species richness of
all four classes, altitude range (frequently used as a
surrogate for habitat heterogeneity, Tews et al. 2004)
was positively correlated with just amphibian species
richness, and negatively correlated with mammalian
species richness. The latter result is contrary to results of
other studies (Kerr and Packer 1997; Ruggiero and
Kitzberger 2004), and is difficult to explain. The variable
‘‘habitat diversity’’ positively correlated with only avian

Table 2 GLM examining the effect of predictor variables on spe-
cies richness for four vertebrate classes (amphibians, reptiles, birds,
and mammals)

Amphibians Reptiles Birds Mammals

Longitude �4.31* �7.95* 1.12 �7.79*
(Longitude)2 1.88 12.09

* �5.02 15.78
*

Latitude �3.47 �128.61* �305.22* �67.78*
(Latitude)2 3.34 253.59

*
614.40

*
131.85

*

(Latitude)3 �0.49 �126.13* �309.11* �64.56*
(Longitude)2 · latitude �1.23 �11.59* 4.07 �16.68*
Longitude · (latitude)2 3.57

*
7.61

* �0.11 8.87
*

Altitude range 0.34
* 0.02 �0.06 �0.48*

(Altitude range)2 �0.29* 0.16 0.10 0.59
*

Habitat diversity 0.03 0.02 0.27
* 0.09

(Habitat diversity)2 0.00 0.06 �0.12 �0.02
Temperature 0.68

*
0.64

*
0.29 0.19

(Temperature)2 �0.86* �0.65* �0.25 �0.35*
Precipitation 0.18 0.08 1.20

*
0.65

*

(Precipitation)2 �0.12 �0.07 �1.23* �0.61*
Human population �0.02 �0.12 0.21 0.46

*

(Human population)2 0.21 0.33
* �0.19 �0.25*

Humanized surface
area

0.16 �0.07 0.14 0.04

(Humanized
surface area)2

�0.34* �0.15 �0.29* �0.15

R2 0.23 0.29 0.34 0.33
F(19, 5050) 81.20 110.60 135.20 131.60

Values of b are shown, as well as values of R2 and F in the last two
rows. In bold, significant slopes after the Bonferroni correction
(k=19; corrected a=0.0026; n=5,070 squares), with P < 0.0025,
and with asterisk those with P < 0.001

Fig. 2 Moran’s I values for the residuals of the models generated
for species richness of amphibians (rhombuses), reptiles (squares),
birds (triangles), and mammals (circles). Filled symbols indicate
values that significantly differed from zero

339



species richness. This contrasts with local level studies
performed in Spain, in which habitat heterogeneity was
a more important determinant of species richness than
was climate (Atauri and de Lucio 2001; Nogués-Bravo
and Martı́nez-Rica 2004; Moreno-Rueda and Pizarro
2007). This suggests that in Spain, climate is relatively
more important at large scales, while topography is
more important at smaller extents. While climate may
mediate large scale changes in species richness, it is
probable that at more local levels, climate, being more
homogeneous, is replaced in importance by habitat
heterogeneity (Böhning-Gaese 1997). Other studies have
also shown that climate is more important than habitat
heterogeneity in determining vertebrate species richness
(Boone and Krohn 2000; Guisan and Hofer 2003). In
fact, the relative importance of the two factors varies
with the grain size considered, with the relative impor-
tance of climate increasing when grain size is relatively
small, as in the present study (Rahbek and Graves 2001;
van Rensburg et al. 2002; Hurlbert and Haskell 2003).

The effect of climate

Climate may affect species richness indirectly through its
effect on productivity (Wright 1983), or directly, as
determined by the physiological tolerances of organisms
(e.g., Kleidon and Mooney 2000). We found that
amphibian and reptilian species richness strongly in-
creased with temperature in a curvilinear fashion, while
avian species richness slightly increased linearly with
temperature, and mammalian species richness was
greatest when temperatures were intermediate (Table 2).
This may be an effect of different tolerances of ecto-
thermic and endothermic groups, with the former being
more sensitive to temperature (Qian et al. 2007). How-
ever, we cannot rule out the possibility that the effect
may be related to productivity. Other studies have found
temperature to be positively correlated with bird (Turner
et al. 1988; Lennon et al. 2000; Evans and Gaston 2005)
and mammalian species richness (Andrews and O’Brien
2000; Badgley and Fox 2000). González-Taboada et al.
(2007), however, found a negative relationship between
temperature and passerine species richness in mainland
Spain, contrasting with the pattern we observed. This
may be a result of the variables and terms introduced
into each model, or a result of model selection (McPh-
erson and Jetz 2007), although we cannot discount that
passerine species richness responds negatively to tem-
perature, while the avian order as a whole responds
positively. Temperature, in fact, affects bird species
richness differently depending on the biogeographic
group considered (Moreno-Rueda and Pizarro 2008).

At low latitudes, productivity may be more related to
precipitation than to temperature (Hawkins et al. 2003;
Whittaker et al. 2007), and in fact, this has been ob-
served in Spain (González-Taboada et al. 2007). Pre-
cipitation had no perceptible relationship to species
richness of amphibians and reptiles, but had a positive

curvilinear relationship with bird and mammalian spe-
cies richness (Table 2). This curvilinear relationship be-
tween productivity and species richness is widespread
(Waide et al. 1999). In mammals, precipitation and other
measures of productivity are frequently associated with
species richness (Owen 1988; Kerr and Packer 1997;
Andrews and O’Brien 2000; Ruggiero and Kitzberger
2004; Tognelli and Kelt 2004). Primary productivity has
also frequently been found to be an important predictor
of bird species richness (Rahbek and Graves 2001; Jetz
and Rahbek 2002; van Rensburg et al. 2002; Ding et al.
2006; Davies et al. 2007). However, González-Taboada
et al. (2007) failed to find a meaningful effect of breeding
season productivity (measured with NDVI and precipi-
tation) and passerine species richness. In the UK, sum-
mer productivity predicts winter bird species richness
(Lennon et al. 2000), and in North America, seasonal
productivity accounts for 61% of variation in bird spe-
cies richness (Hurlbert and Haskell 2003). Similarly, in
the Iberian Peninsula, winter productivity may affect
breeding bird species richness, explaining the different
results found by us (considering annual precipitation)
and by González-Taboada et al. (considering only
breeding-season productivity). On the other hand, in
previous work, we uncovered a negative effect of pre-
cipitation on bird species richness in south-eastern Spain
(Moreno-Rueda and Pizarro 2007). The results we
present here, and in that work, differ because the rela-
tionship between bird species richness and precipitation
varies geographically in mainland Spain (unpublished
data). Therefore, while precipitation negatively corre-
lates with bird species richness in south-eastern Spain, it
has a positive correlation with bird species richness
across the entire Iberian Peninsula.

The absence of any relationship between precipita-
tion and amphibian species richness is intriguing, as this
group is highly dependent on water availability (Rodrı́-
guez et al. 2005; Buckley and Jetz 2007; Qian et al. 2007;
Soares and Brito 2007). Perhaps adaptation to aridity by
Spanish amphibians acts to preclude a relationship be-
tween species richness and precipitation. On the other
hand, in mountainous regions such as the Iberian Pen-
insula, precipitation may not necessarily be tightly re-
lated to water availability, as precipitation falls more
frequently in highlands, while water accumulates in
lowlands.

In conclusion, temperature affected primarily ecto-
therms, whereas precipitation affected endotherms (Ta-
ble 2). In both cases, relationships conformed to
quadratic functions. Physiological differences between
ectotherms and endotherms may drive these results, as
ectotherms are more dependent on environmental tem-
peratures.

Human influence on species richness

Human population density was positively correlated
with species richness of birds and mammals (concave-
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down in mammals), as has been previously found in
many other studies (Balmford et al. 2001; Araújo 2003;
Gaston and Evans 2004). This may suggest conflicts in
conservation planning, as occur in other countries
(Chown et al. 2003; Vázquez and Gaston 2006). Other
studies have explained this correlation as mediated by
productivity, given that humans establish themselves in
high-productivity zones, where species richness is high
(Balmford et al. 2001; Evans and Gaston 2005; Luck
2007). However, it cannot be ruled out that this is an
effect of greater sampling effort in more inhabited zones
(Ferrer et al. 2006).

On the other hand, we found a weak relationship
between species richness and humanized surface area,
with amphibian and avian species richness achieving
maxima at intermediate values of humanization. We use
humanization as an indicator of agricultural surface area
(see Methods), and moderate amounts of farmland may
favor amphibians by the creation of irrigation pools
(Dı́az-Paniagua 2001). On the other hand, different bird
communities inhabit farmland and in natural land (such
as forest) in Spain (Suárez-Seoane et al. 2002). There-
fore, intermediate amounts of farmland surface area
increase species richness through greater habitat diver-
sity. González-Taboada et al. (2007) found a negative
effect of urban zones on passerine species richness.

The role of spatial structure

For the four classes of terrestrial vertebrates, approxi-
mately one-third of the explained variance was due to
spatial structure, and another third was due to a spa-
tially structured environment (i.e., autocorrelated envi-
ronment and species richness). This suggests that spatial
structure had an important role in determining species
richness, as expected given the geography of the Iberian
Peninsula (see Introduction). The variation due to spa-
tial structure may reflect historical processes of extinc-
tion and colonization (Watkinson et al. 2003), which in
the Iberian Peninsula are primarily related to glaciations
and constraints imposed by the Strait of Gibraltar and
the Pyrenees isthmus (Blondel and Mourer-Chauviré
1998). However, at smaller scales, spatial structure
seems to be of lesser importance than is the environment
(Moreno-Rueda and Pizarro 2007). The relative impor-
tance of historical events and natural barriers in the
Iberian Peninsula, with respect to the distribution of
species richness, is greater when considering large ex-
panses of territory.

We expected species richness to increase towards the
Pyrenees (i.e., northwards, contrary to the general pat-
tern, Willig et al. 2003) within mainland Spain, due to a
peninsular effect, as was found in passerines (Carrascal
and Lobo 2003; Ramı́rez and Tellerı́a 2003; González-
Taboada et al. 2007). Indeed, when we controlled for
other variables, we found these taxa displayed complex
relationships with latitude (although not significant for
amphibians), although the relationships were of different

magnitudes (Table 2). The positive value for (latitude)2

suggests that species richness was greatest in the south,
and in the north, near the nexus with African and
European faunas, respectively. These findings suggest
that the dispersion of species from Africa and from
Europe has contributed to species richness in southern
and northern Spain, while the centre of the Iberian
Peninsula is relatively depauperate (see Fig. 1), and that
historical processes are important drivers of the distri-
bution of species richness in mainland Spain. That the
taxonomic group with the highest capacity of dispersion
(birds) had the highest beta-value (see Table 2), while
the one with the lowest dispersion capacity (amphibians)
had the smallest beta, might suggest that the process of
colonization from the rest of Europe, Africa, or both is
not finished. On the other hand, these results are con-
trary to expected results if a mid-domain effect occurs in
Iberian peninsula (Colwell and Lees 2000).

With respect to non-controlled spatial autocorrela-
tion, this seems to be relatively low (Moran’s I < 0.3;
Fig. 2), and only applicable at distances less than 100
km (except for mammals). Therefore, most spatial
autocorrelation was controlled for with the introduction
of spatial structure in the models. It is improbable that
autocorrelation affected the estimates in this work, as
previous studies have shown that results obtained by
ordinal least squares (as these) are not seriously affected
by spatial autocorrelation (Diniz-Filho et al. 2003;
Hawkins et al. 2007).

Unexplained variation

Approximately two-thirds to three-quarters of total
variance was not explained with our models. This may
be due to covariation with variables not used in this
study, but this is a problem universal to all correlational
studies. Moreover, sampling error may contribute, a
probable occurrence given the large number of species
considered. We are aware that sampling error is likely
high, and includes numerous false absences (Bustamante
and Seoane 2004). However, it is known that the infor-
mation on avian distributions is much more accurate
than, for example, information on mammalian distri-
butions. Therefore, we expected better models for birds
than for mammals. However, our models explained
similar amounts of variance for both taxa (Table 1),
suggesting that the effect of sampling error was minor.
Furthermore, stochastic extinctions may diminish spe-
cies number regardless of environment (Hanski 1998).
This factor, together with sampling error, would
diminish the statistical power of analyses, being our re-
sults conservative.

Our models explained intriguingly low amounts of
variance in comparison with previous, regional, works in
the Iberian Peninsula (see Moreno-Rueda and Pizarro
2007). This difference may be caused by geographic
variation in the relationships between environmental
variables and species richness (unpublished data), which
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may have decreased the explanatory power of these
environmental variables at a national scale, because the
different effects of variables on species richness balance
themselves.

Implications for conservation

Our results indicate that the distribution of vertebrate
species richness in mainland Spain is related to different
factors depending on the taxonomic class considered.
This may help explain the results of Rey-Benayas and de
la Montaña (2003), who analyzed vertebrate conserva-
tion priority areas in mainland Spain, finding that areas
of high value for one taxon are inadequate for other
taxa. Recently, Araújo et al. (2007) found that the
addition of new reserves in mainland Spain is necessary
in order to effectively conserve the entire flora and fau-
na. Better understanding the relationships between dif-
ferent environmental and geographic factors and species
richness may help determine the most effective locations
to establish new conservation areas. For example,
according to our results, reserves intended to preserve
reptilian and amphibian diversity should be located in
warm zones, while high precipitation zones would seem
more important for endotherms diversity. A lack of
knowledge about relationships between the environment
and species richness may lead to misplaced reserves. In
Spain, reserves are usually established in areas with
primarily natural landscapes, while moderate levels of
humanized surface area (primarily farmland) may
favour amphibian and avian species richness. This
highlights the need for additional attention on the
conservation attributes of human-transformed land-
scapes (also see Moreno-Rueda and Pizarro 2006;
Burgess et al. 2007).
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